基于含三氮唑配体的pomof材料的合成及其储能性质研究【字数:11823】
目录
摘要I
关键词I
AbstractII
引言
引言(或绪论)1
1 材料与方法 2
1.1 试剂与仪器 2
1.1.1 实验试剂 2
1.1.2 实验仪器 3
1.2 制备与合成 3
1.2.1 含氮配体(PBTA)的合成 3
1.2.2 化合物(PBTA)(H3PMo12O40)的合成 4
1.3 化合物的结构表征 4
1.4 样品的制备 4
1.5 玻碳电极的制备与测定 4
1.6 锂离子电池负极材料的制备与测定 5
2 结果与分析 5
2.1 化合物合成分析 5
2.1.1 单晶合成实验结果 5
2.1.2 单晶合成分析 6
2.2 化合物的晶体结构分析 6
2.3 化合物的性质探究结果分析 11
2.3.1 化合物的超级电容器性能分析 11
2.3.2 化合物的锂电池性能分析 21
3 讨论与结论 22
致谢 23
参考文献 25
本科期间发表的SCI论文 26
基于含三氮唑配体的POMOF材料的合成及其储能性质研究
摘 要
本论文主要介绍了基于磷钼酸和N,N‘(1,4phenylenebis(methylene))bis(1H1,2,4triazol3amine)(简称PBTA)氮杂环配体的通过水热法合成的新的多酸基超分子化合物(PBTA)(H3PMo12O40),并制备一系列基于该化合物的聚吡咯复合材料IxPPy(x为加入吡咯单体的量,x = 0, 100, 150, 200 μL),同时,本文也探究了晶体材料以及复合材料在电化学储能方面的表现。通过单晶X射线衍射测试,确定了该材料的晶体结构,通过分析发现,该化合物内,多金属氧酸盐和配体主要是通过氢键作用以及ππ堆积作用扩展成3D超分子的空间结构。在电化学性质研究中,以玻碳电极作为工作电极,以1 M H2SO4 水溶 *51今日免费论文网|www.51jrft.com +Q: #351916072#
液作为电解液,通过循环伏安法(CV)、恒电流充放电(GCD)以及电化学阻抗(EIS)的测试方法,对化合物的氧化还原性及电容性能进行探究。研究发现,材料表现出良好的可逆氧化还原性质,即磷钼酸阴离子中钼原子连续的双电子氧化还原现象;在储能方面,晶体材料I作为超级电容器正极材料,在0.5 A g1的电流密度下,具有108 F g1的电容量,而作为锂离子电池的负极材料,在100 mA g1的电流密度下,首次放电容量达到933 mAh g1,循环中保持放电容量为263 mAh g1。聚吡咯复合材料在保持多金属氧酸盐(磷钼酸)本身优异氧化还原性的基础上,提高了电容量和倍率性能表现,具有电化学储能方面的应用前景。
SYNTHESIS,STRUCTURES AND PROPERTIES OF THE POLYMERS BASED ON POLYOXOMETALATES CONTAINING TRIAZOLE DERIVATIVES
ABSTRACT
In this study, one 3substituted bistriazole nitrogen heterocyclic organic ligand has been designed and synthesized: N,N‘(1,4phenylenebis(methylene))bis(1H1,2,4triazol3amine) (referred to as PBTA) and phosphomolybdic acid has been selected to synthesize the supramolecular compound (PBTA)(H3PMo12O40) by hydrothermal method and a series of composite materials with gradient concentration of polypyrrole IxPPy (x means the volume of the pyrrole, x = 0, 100, 150, 200 μL) has been prepared. The potential properties of electrochemical energy storage of the above compounds were explored. The crystal structure of the material was determined by single crystal Xray diffraction test. The analysis revealed that the polyoxalates and ligands in the compound were expanded into 3D supramolecular spatial structure mainly through hydrogen bonding and pipi stacking. In the study of electrochemical properties, a glass carbon electrode was used as the working electrode, and an aqueous solution of 1 M H2SO4 was used as the electrolyte. By means of cyclic voltammetry (CV), constant current chargedischarge (GCD) and electrochemical impedance (EIS) test, the oxidative reduction and capacitance performance of the compound were investigated. In terms of redox, the material exhibited the continuous doubleelectron redox phenomenon of molybdenum atoms in the phosphomolybdate anion, showing a good redox property. In terms of energy storage, crystal material I, as the positive electrode material of the supercapacitor, has the specific capacitance of 108 F g1 at the current density of 0.5 A g1. While as the negative electrode material of the lithium ion battery, at the current density of 100 mA g1, the first discharge capacity reaches 933 mAh g1, and the chargedischarge capacity is maintained at 263 mAh g1 in the cycle. On the basis of maintaining the excellent oxidation reducibility of polyoxometallate (phosphomolybdic acid), polypyrrole composites improve the capacitance and rate performance, and has the promising application prospect in electrochemical energy storage.
原文链接:http://www.jxszl.com/hxycl/yyhx/607099.html