NX和VERICUT多面体零件
日期: 2012年10月20日 【摘要】
随着我国数控技术以及新型材料等行业的迅猛发展,各种用途数控机床需求量的日益增加,数控机床与人们的生活越来越密切。五轴加工是数控技术中难度最大、应用范围最广的技术。它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工。
本课题以多面体零件五轴数控加工与仿真为研究对象,首先介绍五轴数控技术及其发展;其次分析了多面体零件加工工艺,包括工件材料、刀具及夹具的选用、切削用量选择及加工路线;最后运用VERICUT软件进行零件仿真加工。并进行了编程优化,提高加工效率。
*查看完整论文请+Q: 351916072
关键字:】五轴机床;工艺分析;仿真加工
引言 1
一、 数控技术 2
(一)数控机床的发展 2
(二)五轴加工技术及其机床 2
二、 多面体零件加工 6
(一)多面体零件加工工艺分析 6
(二)多面体零件加工程序编制 7
三、多面体零件仿真 19
(一)加工前的准备 19
(二)装夹工件和对刀 23
(三)仿真 24
总结 25
参考文献 26
谢辞 27
附录 28
引言
数控加工作为机械制造业中先进生产力的代表,经过十余年的引进与发展,已经在汽车、航空、航天、模具等行业发挥了巨大的作用。它推动了企业的技术进步和经济效益的增长。但是由于多方面原因,国内不同行业在应用数控加工方面表现的差距较大。一方面由于机床刀具软硬件配置等方面的原因,尤其是多坐标控制联动的高速铣削机床,进口设备由于其成本很高,企业不得不考虑其投资效益问题。另一方面多坐标联动高速铣削的CAM软件选型、应用编程与开发方面,需要一个长时期的技术积累才能赶上国外先进水平,尤其是对于人员的技术水平要求较高的CAM软件应用编程开发方面表现更为明显。
用于数控铣削加工编程的CAM软件平台较多,比较常用的UGNX、CATIA、Pro/E、Mastercam、Cimatron、Surfcam、Powermill等,这些CAM软件平台在不同企业数控铣削编程方面发挥了很大的作用,虽然各自应用流程略有差别,但各系统提供的基本数控编程功能都比较相似。但是企业产品对象不同,使得对CAM平台的选型和应用方面的要求有所不同。数控三轴铣削编程上都能满足企业的要求,但在五轴铣削编程,刀具轴矢量控制与后处理程序开发等方面还是存在较大差别的,尤其是五轴机床的加工编程与后处理程序开发表现更为突出。本文就通用的CADCAM软件平台为环境,以几个具体的产品对象的数控铣削加工编程应用实例,简要介绍它们在进行数控三轴铣削、五坐标联动加工编程、后处理开发模式、机床仿真加工模拟接口方面的实例应用。希望对读者有所借鉴作用。
本课题以多面体零件五轴数控加工与仿真为研究对象,首先介绍五轴数控技术及其发展;其次分析了多面体零件加工工艺,包括工件材料、刀具及夹具的选用、切削用量选择及加工路线;最后运用VERICUT软件进行零件仿真加工。并进行了编程优化,提高加工效率。
一、数控技术
(一)数控机床的发展
1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。世界上主要工业发达国家都十分重视数控加工技术的研究和发展。
当时的数控装置采用电子管元件,体积庞大,价格昂贵,只在航空工业等少数有特殊需要的部门用来加工复杂型面零件;1959年,制成了晶体管元件和印刷电路板,使数控装置进入了第二代,体积缩小,成本有所下降;1960年以后,较为简单和经济的点位控制数控钻床,和直线控制数控铣床得到较快发展,使数控机床在机械制造业各部门逐步获得推广。我国于1958年开始研制数控机床,成功试制出配有电子管数控系统的数控机床,1965年开始批量生产配有晶体管数控系统的三坐标数控铣床。
1965年,出现了第三代的集成电路数控装置,不仅体积小,功率消耗少,且可靠性提高,价格进一步下降,促进了数控机床品种和产量的发展。60年代末,先后出现了由一台计算机直接控制多台机床的直接数控系统(简称DNC),又称群控系统;采用小型计算机控制的计算机数控系统(简称CNC),使数控装置进入了以小型计算机化为特征的第四代。
1974年,研制成功使用微处理器和半导体存贮器的微型计算机数控装置(简称MNC),这是第五代数控系统。第五代与第三代相比,数控装置的功能扩大了一倍,而体积则缩小为原来的1/20,价格降低了3/4,可靠性也得到极大的提高。
80年代初,随着计算机软、硬件技术的发展,出现了能进行人机对话式自动编制程序的数控装置;数控装置愈趋小型化,可以直接安装在机床上;数控机床的自动化程度进一步提高,具有自动监控刀具破损和自动检测工件等功能。
(二)五轴加工技术及其机床
1. 五轴加工机床的特征及选用
无论是五面加工机床还是五轴联动加工机床,它们都是在X、Y、Z三个直线运动轴的基础上至少增加A、B、C三个回转运动轴中任两个回转轴,由此导出多样的五轴加工机床的布局方案。针对加工件的形状、尺寸、重量、要求精度、材料的机械性能和切削栽荷等因素,可以确定适用的机床结构布局。
基于立式加工中心和卧式加工中心三直线轴结构布局基础上配置不同的回转运动型式可以得出多种布局,以适应不同场合的需要。
回转轴型式有两类:一类是刀具系统与工件系统各有一个回转运动轴,第二类是两个回转轴均配置给刀具系统或工件系统,通常称之为双摆铣头或双摆转台。
例如,有A/C和B/C两种双摆转台,虽然工作原理大致相同,但A/C转台有可左右支承刚性较大,但当台面向后转时,由于空间狭窄为防止干涉一般摆角较小如图1-1所示,而B/C转台通常为单臂支承刚性较小,但摆角范围大,易观察,适宜小型零件的加工如图1-2所示。
显然,回转轴结构对五轴加工中心机床的功能和性能有重要的作用,近年来它的结构发展主要有以下四方面:
(1)采用力矩电机驱动,减少机械传动提高动态性能,如CyTec公司的CyMill万能铣头;
发展A/B/C三轴摆动铣头,使角度变换更灵活、快速,如德国Zimmermann公司的M3ABC三轴摆角铣头;
(3)研发紧凑型A/B双摆铣头,如意大利Rambaudi公司DTH型A/B双摆铣头的摆角增长至±45。此外我国沈阳机床和齐二机床公司开发的适用于卧轴的A/B的摆角的并联杆机构铣头,具有新颖性,但摆角范围较小;
(4)应用±45斜面回转使轴线立卧转换的结构,一般称作为B轴,由于回转结合面大,可提高刚度和制动力矩,但斜面回转180时,轴线摆角仅为90,因此摆角范围较小,更适用于以五面加工为主的场合。
2. 加工倾斜多面体的坐标转换技术
不同的多面体零件由于其结构和功能的不同,会对其斜面的空间位置有多种的定义方法,因此要求数控系统配置完善的坐标转换应用软件以方便使用。
原文链接:http://www.jxszl.com/jxgc/mjsk/4552.html